
Notification Number: F. NO. COE/ Ph.D./(Notification)/519/2022

Name of Scholar : Zubair Ali Ansari

Name of Supervisor : Dr. Jahiruddin

Name of Department : Computer Science

Title : Efficient Algorithms for Subgraph Matching in Big Graphs

Keywords: Graph searching, subgraph matching, subgraph isomorphism, subgraph matching

algorithms, eccentricity, embedding, graph decomposition, large graphs

The remarkable expansion of large networks through numerous internet resources, along with

their affordable accessibility, turned these large and complex networks into the demanding

source of relevant information. Many large and complex networks such as social networks,

citation networks, biological networks, etc., can be modeled by graphs. In a graph, network

entities (objects) are represented by vertices, and interactions between them are represented by

edges.

Depending on the nature of the networks, the resulting data graphs are very diverse and have

many vertices and edges. Analyzing such large and complex data graphs to retrieve demanding

information is an emerging research challenge and has potential applications useful to both

industry and academia. However, in such a data graph crucial graph query primitive at the heart

of many complex network analysis is to find efficiently and effectively all copies of the

specified query graph. Finding all copies of the specified query graph into the associated data

graph is a well-known subgraph matching problem. Because the subgraph matching problem

is computationally expensive, finding all copies of the query graph in a data graph becomes

more difficult when the data graph is diverse and large.

Researchers have presented many algorithms to deal with such subgraph matching problems

that include TurboISO, QuickSI, VF2, Glasgow, and RI. However, most of them are inefficient

when the size of the data graph is too large. Moreover, these algorithms show exponential

behavior for some sets of queries and data graphs pairs.

To reduce the computational cost of the subgraph matching algorithm, it is crucial to select a

pivot vertex (a vertex to start the matching process) of the query graph. Researchers have

proposed different objective functions to determine the pivot vertex. However, to the best of

our knowledge, none of the foregoing objective functions consider minimizing the size of

candidate regions to select a pivot vertex. As the candidate region is a portion of the data graph

that may have some isomorphic images (i.e., embeddings) of the query graph, to find such

embeddings of a given query graph in the associated data graph, we need to explore all possible

candidate regions of the data graph. In this regard, we have proposed an objective function to

identify the pivot vertex in the query graph.

Using the objective function to locate the pivot vertex of the query graph, we have designed

and implemented a subgraph matching algorithm SubISO to find n-embedding of the query

graph. We have also compared the performance of SubISO with three popular state-of-the-art

subgraph matching algorithms, namely TurboISO, QuickSI, and RI over three benchmark

datasets -- Human, Yeast, and Hprd. We observed that SubISO performs significantly better in

terms of execution time, and the number of embeddings found.

A study on some specific queries (aka straggler queries) revealed that the existing subgraph

matching algorithms show exponential behavior to find their matches into the associated data

graph. Recently, researchers have evaluated the exponential behavior of five existing subgraph

matching algorithms-- GraphQL, SPath, QuickSI, TurboISO, and BoostISO on different pairs

of query and data graphs. Their evaluations show that all contemporary algorithms have a

couple of straggler queries, which are algorithm and data specific. Researchers have suggested

many solutions like taking a certain time limit to find matches of straggler queries, and

randomly try to solve straggler queries using other algorithms as straggler queries are algorithm

specific. However, more focus is needed to deal with straggler queries. In this regard, we have

proposed a solution of limiting the recursive calls in the SubgraphSearch() function of the

SubISO algorithm. As a result, the SubISO algorithm finds many matches of identified

straggler queries within a very short period.

To handle large graphs as data graphs, the subgraph matching algorithms lag in time efficiency.

To deal with this issue, many researchers decomposed or compressed the data graph and then

searched copies of the query graph in the resulting data graph. In this line, we have proposed a

subgraph matching algorithm SubGlw that decomposes a data graph into several small-sized

candidate subgraphs based on the broader sense of the divide-and-conquer problem-solving

paradigm. As the candidate subgraph is a subgraph of the data graph that may contain several

copies of the query graph, the decomposition of such data graph is carried out in such a way

that the size and count of candidate subgraphs are optimal. After the decomposition, the

proposed SubGlw algorithm finds all copies of the query graph in the candidate subgraph by

exploring successively each candidate subgraph as the Glasgow algorithm does. The

performance of SubGlw is empirically evaluated and compared with two state-of-the-art

subgraph isomorphism solvers -- SubISO and Glasgow over three benchmark datasets -- Yeast,

Human, and Hprd. The experimental findings reveal that SubGlw performs significantly better

in terms of both embedding count and execution time. We have also presented an analysis for

identifying saddle point, a timeout at which the SubGlw algorithm achieves maximum

embeddings with the least execution time. Analysis on saddle point provides a better

understanding for parameter settings in the proposed SubGlw algorithm.

Subgraph matching algorithms can be divided into three categories, namely search tree-based

algorithms, constraint programming-based algorithms, and graph indexing-based algorithms.

Search tree-based algorithms are very time-efficient, while constraint programming-based

algorithms are remarkably effective in proportion to the number of solutions found. RI is one

of the fastest search tree-based algorithms for solving subgraph matching problems. However,

RI is not as effective as constraint programming-based algorithms. For a well-performing

subgraph matching algorithm, time efficiency is crucial, but other performance measures such

as the number of solutions found (i.e., effectiveness of the algorithm), index size, and the

average number of recursive calls are also significant. To enhance RI's effectiveness without

compromising its efficiency, we have proposed an enhanced version of RI termed as RI+, using

candidate region-based decomposition and ordering. In this line, we have proposed several

candidate region orderings that uses the structural properties of the candidate regions. We have

compared the performance of RI+ with RI on two performance measures that include count-

of-embeddings and search time over three benchmark datasets -- Human, Yeast, and Hprd. On

comparative analysis, we observed that RI+ showed a significant improvement over both the

performance measures. Moreover, on the empirical analysis, we observed that on changing the

candidate region ordering in the proposed RI+ algorithm the search time of RI+ improves

significantly.

