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A B S T R A C T

This thesis “ON THE GENERALIZED DERIVATIONS OF ALGEBRAS” has been

spread over in five chapters.

Chapter 1 gives the history of derivations starting from Isaac Newton (1642-1727)

and G. W. Leibnitz (1646-1717). It tells us Geometrical and Physical significance of the

derivative.

Chapter 2 deals with Generalized Derivations in Lie and Ritt Algebra. Let U be an

arbitrary non-associative algebra over a field K and GD(U) be the set of all generalized

derivations on U .

Here we have proved that

(1) f1 + f2 ∈ GD(U)

(2) Lie product [f1, f2] ∈ GD(U).

So, GD(U) becomes generalized differential algebra of U .

(3) Jacobi identity.

(4) Generalized Leibnitz Theorem

“If Char K = 0 then

fn(xy)

⌊n
=

n
∑

i=0

(

1

⌊i
f i(x)

) (

1

⌊n − i
Dn−i(y)

)′′

(5) “If U is associative or Lie Algebra then inner generalized derivations fa form an

Ideal J (U) in the derivation algebra D(U),” which generalizes Jacobson [12, p.10].

(6) GD(U) is not closed with respect to multiplication by means of an example.

It is our attempt that f1f2 is a generalized derivation iff f1 and f2 satisfy extra

conditions. Also if f1 depends on f2, f2 be an arbitrary generalized derivation then

f1 is also a generalized derivation.

(7) “Let R be an integral domain and let f be a generalized derivation on R then f

can be extended in a unique way to a generalized derivation F of the quotient field

K of R

For
x

y
∈ K (x, y ∈ R, y 6= 0)

we get F

(

x

y

)

=
f(x)y − xD(y)

y2
.′′

which generalizes Zariski & Samuel [22,p.120].
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(8) Let I be generalized differential Ideal in a Generalized Ritt Algebra. If a be any

element with an ∈ I then

(f(a))2n−1 ∈ I,

which generalizes Kaplansky [13, p.12].

(9) If f is generalized derivation on A then

f (associator) = 0

where associator is defined as in [9], [x, y, z] = (xy)z − x(yz), ∀ x, y, z ∈ A, A be

the any non-associative algebra.

Chapter 3 studies the generalized Jordan derivations in prime rings of Ch 6= 2. Initially

we define Generalized Jordan derivation f : A → A, A be the prime ring of Ch 6= 2 by

(i) f(a + b) = f(a) + f(b)

(ii) f(ab) = f(b)a + bd(a) ∀ a, b ∈ A

where d is defined as reverse derivations of A.

We have proved that

(1) If A be a prime ring and suppose that f is a non-zero generalized Jordan derivation

and d is a non-zero reverse derivation of A then A must be commutative integral

domain.

(2) If f is generalized Jordan Derivation of A then ∀, a, b ∈ A

f(aba) = f(a)ba + ad(b)a + abd(a),

which generalizes Herstein [7, p.1106].

(3) We denote ab = f(ab) − f(a)b − ad(b) Then we have proved

(i) ab+c = ab + ac

(ii) ab = −ba ∀ a, b ∈ A

(4) If A is prime ring of Ch 6= 2 then any generalized Jordan derivation is a generalized

derivation i.e. f(ab) = f(a)b + ad(b),

which is the definition of Generalized Derivation of Havala [6,p.1147].
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Then we have redefined a Generalized Jordan Derivation on any ring. f is Gener-

alized Jordan Derivation on any ring A if it satisfies the followings:

(i) f(a + b) = f(a) + f(b)

(ii) f(ab) = f(b)a + bd(a)

(iii) f(aba) = f(a)b + ad(b)a + abd(a) ∀ a, b ∈ A

where d is the reverse derivation.

(5) Let A be any prime ring of Ch = 2 and if A is not commutative Integral domain,

then any generalized Jordan derivation is a generalized derivation.

(6) “If R admits a (σ, τ) generalized derivation f such that f 2(I) = 0, I be a non-zero

Ideal of 2-torsion free ring R and f commutes with both σ, τ then f = 0, d = 0,”

which generalizes Mohd. Asraf and Nadeem-Ur-Rahaman [19, p.260].

Chapter 4 deals with the Generalized inner derivations in a ring. Let A be a ring,

then an additive mapping f : A → A is said to be generalized inner derivation if

f(xy) = f(x)y + ha(y) where

ha : A → A

y → ha(y) = [a, y]

is the inner derivations ∀ x, y ∈ A, fixed element a ∈ A. Let GID(A) be the set of all

generalized inner derivation of A into itself.

We have proved that

(1) If f ∈ GID(A) then

f(xyz) = f(x)yz + xha(yz) ∀ x, y, z ∈ A

(2) If f is generalized inner derivation in semi-prime ring A then ha must necessarily

be a derivation, which generalizes Havala [6,p.1147].

(3) Let A be a semi-prime ring then ∀ x, y ∈ A

f(xyx) = f(x)yx + xd(y)x + xyd(x),

which generalizes Herstein [7, p.1106].
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(4) If rf(x) = 0 ∀ x ∈ A, r be any element of A, A being Prime ring then either r = 0

or ha = 0.

This result generalizes Posner [5, p.1093].

(5) If f ∈ GID(A) then

f(xyz) = f(xy)z + xf(yz) − xf(y)z∀ x, y, z ∈ A, f ∈ GID(A),

which generalizes Bresar [16, p.90].

(6) If A has unity then generalized inner derivations become inner derivation and vice

versa.

(7) If f(aba) = f(a)ba ∀ b ∈ A where f is generalized inner derivation on prime ring

A.

(8) if f ∈ GID(A) then

x(f(x)a + af(x)) = f(x)(ax + xa),

for fixed element a ∈ A.

(9) Let K be non-zero Ideal of A, A with unity satisfying

xy + f(xy) = yx + f(yx)

then

(1 + f(1))[x, y] + [a, [x, y]] = 0 ∀ x, y ∈ A.

(10) Using Havala [6, p.1147] def. of Generalized derivation we have proved.

(i) d(b)a = ad(b)

(ii) f(ab + ba) = f(a)b + f(b)a + d(ab)

(iii) If A is without zero divisors and if ab = 0 then f(ab) = f(a)b + f(b)a

(iv) ad(b)ba = abd(b)a ∀ a, b ∈ A, A be any prime ring of Ch 6= 2.

Chapter 5 is devoted to study the generalized graded derivation. We define a linear

mapping f : A → A where A be any graded algerba, is generalized graded derivation if

f(ab) = f(a)b + (−1)|a| |f |aD(b) ∀a, b ∈ A
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where D = derivation on A.

This result generalizes Havala [6, p.1147] def. of Generalized Derivation and Leibnitz

Rule. Let GRD(A) be the set of all generalized graded derivation of A.

We have proved

(1) (a) f1 + f2 6∈ GRD(A)

(b) [f1, f2] 6∈ GRD(A)

(2) Let f be a generalized graded derivation of A, A being the graded algebra defined

by

f(xy) = f(x)y + (−1)|x| |f |xD(y) ∀x, y ∈ A.

If af(x) = 0, a ∈ A then either a = 0 or D = 0, which generalizes Posner [5,

p.1093].

(3) If f is generalized graded derivation of A then

f(aba) =







f(a)ba + aD(b)a + abD(a) if |f | = even

f(a)ba + (−1)|a|aD(b)a + (−1)|a| |b|abD(a) if |f | = odd,

which generalizes Herstein [7, p.1106].

(4) f(an) = f(a2)an−2 + a2D(an−2) ∀n ≥ 3

Putting the values of n, we get Havala [6, p.1147] results.

(5) If f ∈ GRD(A) then

(

(−1)|a| |b| |f | − (−1)|a| |f |
)

abD(b)a = 0.

(6) If f ∈ GRD(A), A be the graded algebra then

f(xyz) =















f(xy)z + xf(yz) − xf(y)z if |f | = even

f(xy)z + xf(yz) − xf(y)z+
(

(−1)|x| |y| − (−1)|y|
)

xyD(z) if |f | = odd,

which generalizes Bresar [16,p.90].

In the end we have given a list of research papers and books which we have used in this

thesis.
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